Design and applications of biodegradable polyester tissue scaffolds based on endogenous monomers found in human metabolism.
نویسندگان
چکیده
Synthetic polyesters have deeply impacted various biomedical and engineering fields, such as tissue scaffolding and therapeutic delivery. Currently, many applications involving polyesters are being explored with polymers derived from monomers that are endogenous to the human metabolism. Examples of these monomers include glycerol, xylitol, sorbitol, and lactic, sebacic, citric, succinic, alpha-ketoglutaric, and fumaric acids. In terms of mechanical versatility, crystallinity, hydrophobicity, and biocompatibility, polyesters synthesized partially or completely from these monomers can display a wide range of properties. The flexibility in these macromolecular properties allows for materials to be tailored according to the needs of a particular application. Along with the presence of natural monomers that allows for a high probability of biocompatibility, there is also an added benefit that this class of polyesters is more environmentally friendly than many other materials used in biomedical engineering. While the selection of monomers may be limited by nature, these polymers have produced or have the potential to produce an enormous number of successes in vitro and in vivo.
منابع مشابه
Ibuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering
Background: This study addressed the development of biodegradable and biocompatible scaffolds with enhanced biomechanical characteristics. The biocompatibility and the cationic nature of chitosan (CTS) make it more effective as a bone grafting material. Methods: The hydroxyapatite nanoparticles (nHA) were synthesized by hydrothermal method, and bioglass (nBG) (50% SiO2-45% CaO-5% P2O5) was synt...
متن کاملTissue Engineered Scaffolds in Regenerative Medicine
Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...
متن کاملApplication of Electrospun Nanofibrous PHBV Scaffold in Neural Graft and Regeneration: A Mini-Review
Among the synthetic polymers, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microbial polyester is one of the biocompatible and biodegradable copolymers in the nanomedicine scope. PHBV has key points and suitable properties to support cellular adhesion, proliferation and differentiation of nanofibers. Nanofibers are noticeably employed in order to enhance the performance of biomaterials,...
متن کاملThe Role of Biodegradable Engineered Nanofiber Scaffolds Seeded with Hair Follicle Stem Cells for Tissue Engineering
Background: The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. Methods: The bulge region of rat whisker was isolated and cultured in DMEM: n...
متن کاملSynthesis and Characterization of Biodegradable Semi-Interpenetrating Polymer Networks Based on Star-Shaped Copolymers of ɛ-Caprolactone and Lactide
In this paper, the focus is on a new kind of biodegradable semi-interpenetrating polymer networks, which derived from ɛ-caprolactone, lactide, 1,4-butane diisocyanate and ethylenediamine and also its potential has been investigated in soft tissue engineering applications. The polymers were characterized by nuclear magnetic resonance (NMR) spectrometry, fourier transform infrared spectroscopy (F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 14 10 شماره
صفحات -
تاریخ انتشار 2009